C. elegans locomotion: small circuits, complex functions.
نویسندگان
چکیده
With 302 neurons in the adult Caenorhabditis elegans nervous system, it should be possible to build models of complex behaviors spanning sensory input to motor output. The logic of the motor circuit is an essential component of such models. Advances in physiological, anatomical, and neurogenetic analysis are revealing a surprisingly complex signaling network in the worm's small motor circuit. We are progressing towards a systems level dissection of the network of premotor interneurons, motor neurons, and muscle cells that move the animal forward and backward in its environment.
منابع مشابه
Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome
Determining the fundamental architectural design of complex nervous systems will lead to significant medical and technological advances. Yet it remains unclear how nervous systems evolved highly efficient networks with near optimal sharing of pathways that yet produce multiple distinct behaviors to reach the organism's goals. To determine this, the nematode roundworm Caenorhabditis elegans is a...
متن کاملEncoding of Both Analog- and Digital-like Behavioral Outputs by One C. elegans Interneuron
Model organisms usually possess a small nervous system but nevertheless execute a large array of complex behaviors, suggesting that some neurons are likely multifunctional and may encode multiple behavioral outputs. Here, we show that the C. elegans interneuron AIY regulates two distinct behavioral outputs: locomotion speed and direction-switch by recruiting two different circuits. The "speed" ...
متن کاملModulation of Locomotion and Reproduction by FLP Neuropeptides in the Nematode Caenorhabditis elegans
Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G prot...
متن کاملAn Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Activity to Bias C. elegans for Forward Locomotion
A neural network can sustain and switch between different activity patterns to execute multiple behaviors. By monitoring the decision making for directional locomotion through motor circuit calcium imaging in behaving Caenorhabditis elegans (C. elegans), we reveal that C. elegans determines the directionality of movements by establishing an imbalanced output between the forward and backward mot...
متن کاملNeuronal Control of Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor
How simple neuronal circuits control behavior is not well understood at the molecular or genetic level. In Caenorhabditis elegans, foraging behavior consists of long, forward movements interrupted by brief reversals. To determine how this pattern is generated and regulated, we have developed novel perturbation techniques that allow us to depolarize selected neurons in vivo using the dominant gl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current opinion in neurobiology
دوره 33 شماره
صفحات -
تاریخ انتشار 2015